321 research outputs found

    Context-based person identification for news collection

    Get PDF

    Construction and applications of the Dirichlet-to-Neumann operator in transmission line modeling

    Get PDF
    The Dirichlet-to-Neumann (DIN) operator is a useful tool in the characterization of interconnect structures. in. combination with the Method of Moments; it con. be used for the calculation, of the per-unit length transmission line parameters of multi-conductor Or to directly determine the interval impedance of conductors. This paper presents a new and fast calculation method for the DIN boundary operator in the important case of rectangular structures, based on the superposition of parallel-plate waveguide modes. Especially for its non-differential form, some numerical issues need to be addressed. It is further explained how the DtN operator can be determined for composite geometries. The theory is illustrated with some numerical examples

    Eigenmode-based capacitance calculations with applications in passivation layer design

    Get PDF
    The design of high-speed metallic interconnects such as microstrips requires the correct characterization of both the conductors and the surrounding dielectric environment, in order to accurately predict their propagation characteristics. A fast boundary integral equation approach is obtained by modeling all materials as equivalent surface charge densities in free space. The capacitive behavior of a finite dielectric environment can then be determined by means of a transformation matrix, relating these charge densities to the boundary value of the electric potential. In this paper, a new calculation method is presented for the important case that the dielectric environment is composed of homogeneous rectangles. The method, based on a surface charge expansion in terms of the Robin eigenfunctions of the considered rectangles, is not only more efficient than traditional methods, but is also more accurate, as shown in some numerical experiments. As an application, the design and behavior of a microstrip passivation layer is treated in some detail

    Named entity recognition on flemish audio-visual and news-paper archives

    Get PDF

    Construction of the dirichlet to neumann boundary operator for triangles and applications in the analysis of polygonal conductors

    Get PDF
    This paper introduces a fast and accurate method to investigate the broadband inductive and resistive behavior of conductors with a nonrectangular cross section. The presented iterative combined waveguide mode (ICWM) algorithm leads to an expansion of the longitudinal electric field inside a triangle using a combination of parallel-plate waveguide modes in three directions, each perpendicular to one of the triangle sides. This expansion is used to calculate the triangle's Dirichlet to Neumann boundary operator. Subsequently, any polygonal conductor can be modeled as a combination of triangles. The method is especially useful to investigate current crowding effects near sharp conductor corners. In a number of numerical examples, the accuracy of the ICWM algorithm is investigated, and the method is applied to some polygonal conductor configurations

    Lifted rule injection for relation embeddings

    Get PDF
    Methods based on representation learning currently hold the state-of-the-art in many natural language processing and knowledge base inference tasks. Yet, a major challenge is how to efficiently incorporate commonsense knowledge into such models. A recent approach regularizes relation and entity representations by propositionalization of first-order logic rules. However, propositionalization does not scale beyond domains with only few entities and rules. In this paper we present a highly efficient method for incorporating implication rules into distributed representations for automated knowledge base construction. We map entity-tuple embeddings into an approximately Boolean space and encourage a partial ordering over relation embeddings based on implication rules mined from WordNet. Surprisingly, we find that the strong restriction of the entity-tuple embedding space does not hurt the expressiveness of the model and even acts as a regularizer that improves generalization. By incorporating few commonsense rules, we achieve an increase of 2 percentage points mean average precision over a matrix factorization baseline, while observing a negligible increase in runtime

    Frequency-dependent substrate characterization via an iterative pole search algorithm

    Get PDF
    The characterization of frequency-dependent material properties is an important issue in nowadays high-speed interconnect design. This letter presents a practical method to determine the complex permittivity of a substrate material, by combining measurements with simulations. A rational permittivity model is determined by searching for its poles and residues using an iterative optimization method. Its accuracy is verified by comparing coplanar waveguide measurements with simulations based on the new material model

    System Identification with Time-Aware Neural Sequence Models

    Full text link
    Established recurrent neural networks are well-suited to solve a wide variety of prediction tasks involving discrete sequences. However, they do not perform as well in the task of dynamical system identification, when dealing with observations from continuous variables that are unevenly sampled in time, for example due to missing observations. We show how such neural sequence models can be adapted to deal with variable step sizes in a natural way. In particular, we introduce a time-aware and stationary extension of existing models (including the Gated Recurrent Unit) that allows them to deal with unevenly sampled system observations by adapting to the observation times, while facilitating higher-order temporal behavior. We discuss the properties and demonstrate the validity of the proposed approach, based on samples from two industrial input/output processes.Comment: 34th AAAI Conference on Artificial Intelligence (AAAI 2020
    • …
    corecore